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ABSTRACT

This note, by studying relations between the length of the shortest lattice vectors
and the covering minima of a lattice, mainly proves that for every d-dimensional
packing lattice of balls one can find a 4-dimensional plane, parallel to a lattice plane,
such that the plane meets none of the balls of the packing, provided the dimension
d is large enough. On the other hand, we show that for certain ball packing lattices
the highest dimension of such “free planes” is far from d.

1. Introduction

Throughout the paper let Rd be the d-dimensional Euclidean space equip-
ped with the Euclidean norm ‖x‖ and the inner product 〈x,y〉, x,y ∈ Rd.
Let Bd be the d-dimensional unit ball centered at the origin o. As usual a
lattice Λ ⊂ Rd is defined as the set of all integral combinations of d linearly
independent vectors bi ∈ Rd, i.e.,

Λ = ⊕Zbi = {z1b1 + · · ·+ zdbd : zi ∈ Z} .

Every set of d vectors {b̃1, . . . , b̃d} with ⊕Zb̃i = Λ is called a basis of the
lattice. An l-dimensional affine subspace L ⊂ Rd is called an l-dimensional
lattice plane if dim(L∩Λ) = l. For a plane L the orthogonal projection of a
set X ⊂ Rd onto the orthogonal complement of L is denoted by X|L⊥. For
an l-dimensional lattice plane L with respect to a lattice Λ the set Λ|L⊥ is
a (d− l)-dimensional lattice. The length of the shortest non-zero vectors in
a lattice Λ is denoted by λ1(Λ), i.e.,

λ1(Λ) = min {‖b‖ : b ∈ Λ\{o}} .

λ1(Λ) is also called the homogeneous minimum of Λ, and as a counterpart
we have the inhomogeneous minimum µ(Λ) defined by

µ(Λ) = max
x∈lin(Λ)

min {‖x− b‖ : b ∈ Λ} .

This means that µ(Λ) is the smallest number µ with the property that
Λ+µBd covers the space Rd. For this reason, µ(Λ) is also called the covering
radius of Λ. In [14] the covering radius has been embedded in a series of
functionals µi(Λ) which, in our setting, can be defined by

µi(Λ) = max
L

{
µ
(
Λ
∣∣L⊥

)}
,
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where the maximum is taken over all (d− i)-dimensional lattice planes L of
Λ. µi(Λ) is called the i-th covering minima of Λ. In fact, it is the maximal
covering radius among all i-dimensional lattices arising by those projections
of Λ. Obviously, we have

µ(Λ) = µd(Λ) ≥ µd−1(Λ) ≥ · · · ≥ µ1(Λ).

A lattice Λ ⊂ Rd is called a packing lattice of Bd if, for two different points
x and y of Λ, the translates x + Bd and y + Bd have no interior points in
common. In other words, a lattice Λ is a packing lattice of Bd if and only if
λ1(Λ) ≥ 2, and the homogeneous minimum can also be defined by

2
λ1(Λ)

= min
{

λ ∈ R>0 : λΛ is a packing lattice of Bd
}

.

So we have

µ

(
2

λ1(Λ)
Λ
)
≥ 1 or µd(Λ) ≥ λ1(Λ)

2

for every lattice Λ ⊂ Rd.
By the definition of the covering minima and the homogeneous minimum,

the statement “µi(Λ) ≥ λ1(Λ)
2 for all d-dimensional lattices” has the following

equivalent geometrical interpretation: For every d-dimensional lattice ball
packing one can find a (d − i)-dimensional plane H, parallel to a lattice
palne, which does not meet the balls of the packing in their interior. One
may say that such a plane is “free”.

In 1960, by an elementary method Heppes [9] proved that

µ2(Λ) >
λ1(Λ)

2
for every 3-dimensional lattice. In other words, in every 3-dimensional lattice
ball packing one can find a cylinder of infinite length which does not intersect
any of the balls. Later this result was generalized in [10] and [13] to high
dimensions, i.e., for d ≥ 3 one has

µd−1(Λ) >
λ1(Λ)

2
.

As a counterpart it was shown by Hausel [7], correcting a claim of [11], that
there exists a constant α such that in every dimension d there exists a lattice
Λ̃ ⊂ Rd with

µbα
√

dc(Λ̃) <
λ1(Λ̃)

2
.

This note improves both results by the following theorems:

Theorem 1.1. Let Λ ⊂ Rd be a lattice. We have

µd−k(Λ) >
λ1(Λ)

2
in the cases i) d ≥ 5 and k = 2, ii) d = 8 and k = 3, iii) d sufficiently large
and k = 4.

Hence for sufficiently large d, for every d-dimensional lattice ball packing
we can find a 4-dimensional plane H which does not meet any of the balls
of the packing. On the other hand, we will prove
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Theorem 1.2. There exists a constant β < 1 such that in every dimension
one can find a lattice Λ̃ with

µk(Λ̃) <
λ1(Λ̃)

2
, k ≤ βd.

So in general we can not find a “free” plane of (1− β)d-dimensions with
respect to a packing lattice. Unfortunately, we have no idea about the right
dimension of maximal “free” planes. It seems to be an interesting problem
to narrow the gap between the bounds given in the theorems.

In non-lattice ball packings the situation is quite different. Recently it
was shown in [8] that for any fixed d and ε > 0, there exists a periodic
packing set X(d, ε) of Bd such that the length of any segment contained in
Rd \ (X(d, ε) + εBd) is bounded from above by a constant c(d, ε). So “free”
planes are lattice phenomena.

We want to remark that in [14] the covering minima have been introduced
in a more general setting, namely with respect to arbitrary norms. For more
information on covering minima we refer to [14] and [16]. For a general
introduction to lattices, homogeneous and inhomogeneous minima as well
as to ball packings we refer to [6] and [19].

2. Proofs of the Theorems

The main ingredient of the proof of Theorem 1.1 is a Korkin-Zolotarev
reduced basis of a lattice Λ ⊂ Rd which can be recursively defined as follows
(cf. e.g. [16], [5]):

Definition 2.1. A basis a1, . . . ,ad of a lattice is Korkin-Zolotarev reduced
if

(1) ‖a1‖ = λ1(Λ),
(2) γi = 〈ai,a1〉

‖a1‖2 satisfies |γi| ≤ 1
2 , i = 2, . . . , d,

(3) the projections ai|lin(a1)⊥ = ai − γia1, i = 2, . . . , d, yield a Korkin-
Zolotarev reduced basis of the lattice Λd−1 = Λ|lin(a1)⊥.

The idea behind such a Korkin-Zolotarev reduced basis is to find a basis
which is “as short and orthogonal as possible”. It was shown in [15] that

Theorem 2.1 (Korkin-Zolotarev). Every lattice Λ ⊂ Rd has a Korkin-
Zolotarev reduced basis a1, . . . ,ad. Moreover, the homogeneous minima of
the lattices Λd−i = Λ|lin{a1, . . . ,ai}⊥, i = 1, . . . , d− 1 and Λd = Λ satisfy

λ1(Λd−(i+1)) ≥
√

3
2

λ1(Λd−i)

and

λ1(Λd−(i+2)) ≥
√

2
3
λ1(Λd−i).

Now we are ready for the proof of the first theorem.
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Proof of Theorem 1.1. Let Λ ⊂ Rd be a lattice with a Korkin-Zolotarev
reduced basis a1, . . . ,ad and let Λk, k = 1, . . . , d, be the corresponding
lattices defined in Theorem 2.1. By the definition of µi(Λ) and Theorem 2.1
we have

2
µd−k(Λ)
λ1(Λ)

≥ 2
µ(Λd−k)
λ1(Λd−k)

· λ1(Λd−k)
λ1(Λ)

≥ 2
µ(Λd−k)
λ1(Λd−k)

·
√

2
3

b k
2
c (√

3
2

)k mod 2

. (2.1)

Next, depending on the index k and the dimension d listed in Theorem
1.1, we apply to the quotient 2 µ(Λd−k)

λ1(Λd−k)
various well-known lower bounds on

the ratio of covering radius to the packing radius of a lattice.
For any 3-dimensional lattice Λ̃ it was shown in [2] that

2µ(Λ̃)
λ1(Λ̃)

≥
√

5
3
. (2.2)

Thus, by (2.1) we have for d = 5 and k = 2

2µ5−2(Λ)
λ1(Λ)

≥ 2
µ(Λ3)
λ1(Λ3)

·
√

2
3
≥
√

10
9

> 1.

In other words,

µ5−2(Λ) >
λ1(Λ)

2
(2.3)

for every 5-dimensional lattice. For higher dimensions we use a result of [18]
on the distance between the center and a vertex of a Voronöı-cell which, in
our terminology, reads

2µ(Λ̃)
λ1(Λ̃)

≥
√

2d

d + 1
(2.4)

for every d-dimensional lattice Λ̃. Hence for k = 2 we get

2
µ(Λd−2)
λ1(Λd−2)

≥
√

2d− 4
d− 1

and therefore by (2.1), for d ≥ 6,

µd−2(Λ) >
λ1(Λ)

2
.

Together with (2.3) we have proven the case i) of the theorem.
For the second case (d = 8, k = 3) we use a result of [12], saying

2
µ(Λ̃)
λ1(Λ̃)

≥

√
3
2

+
√

13
6

(2.5)

for every 5-dimensional lattice Λ̃.
Finally, for d sufficiently large and k = 4 we apply an inequality of [13]

2
µ(Λ̃)
λ1(Λ̃)

> 1.51, dim(Λ̃) large, (2.6)

to the quotient 2 µ(Λd−k)
λ1(Λd−k)

in (2.1).
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All the inequalities (2.2), (2.4), (2.5), and (2.6) can be found with proofs
in [19]. �

The proof also gives a description of the k-dimensional “free” planes.
Namely, with the notation of Theorem 2.1, let Lk = lin{a1, . . . ,ak} and let
pk ∈ lin{a1, . . . ,ak}⊥ be a point with

dist(pk,Λd−k) = µ(Λd−k),

where dist(X, Y ) indicates the distance between X and Y . Then we have

dist(pk + Lk,Λ) = µ(Λd−k) >
λ1(Λ)

2
for the considered cases of d and k (cf. (2.1)).

Let us mention that by a result of [3] it is known that there exist lattices
Λ̃ ⊂ Rd with

2
µ(Λ̃)
λ1(Λ̃)

≤ 2 + o(1).

Thus with the method used in the proof, Theorem 1.1 can not be much
improved.

To prove Theorem 1.2 we just combine two beautiful results from the
theory of transference theorems.

Proof of Theorem 1.2. Let Λ ⊂ Rd be a d-dimensional lattice and let Λ∗ be
its dual,

Λ∗ = {v ∈ Rd : 〈u,v〉 ∈ Z, for all u ∈ Λ}.
It was shown by Conway and Thompson (see page 46 of [17]) that there
exists a constant β1 such that for every dimension d one can find a lattice
Λ̃ ⊂ Rd with

λ1(Λ̃) · λ1(Λ̃∗) ≥ β1d.

By definition [λ1(Λ̃∗)]−1 is the maximal distance between parallel (d − 1)-
dimensional lattice hyperplanes of Λ̃ and thus (see [14])

2µ1(Λ̃) = 1/λ1(Λ̃∗).

Therefore we have

2
µ1(Λ̃)
λ1(Λ̃)

=
1

λ1(Λ̃) · λ1(Λ̃∗)
≤ 1

β1d
. (2.7)

On the other hand, [1] proved that there exists a constant β2 > 0 such
that

µ(Λ) · λ1(Λ∗) ≤ β2d

for every lattice Λ ⊂ Rd. Or with the first covering minima we may write

µ(Λ) ≤ 2β2 d · µ1(Λ). (2.8)

Now for a given lattice Λ ⊂ Rd and an index k ∈ {1, . . . , d} let Ld−k be
a (d − k)-dimensional lattice hyperplane such that for the lattice Λk =
Λ|(Ld−k)⊥ holds

µk(Λ) = µ(Λk).
Then we have

µ1(Λk) ≤ µ1(Λ)
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and, applying (2.8) to the lattice Λk,

µk(Λ) ≤ 2β2 k · µ1(Λ), 1 ≤ k ≤ d.

Hence for a lattice Λ̃ satisfying (2.7) we may deduce

2
µk(Λ̃)
λ1(Λ̃)

≤ 4β2k · µ1(Λ̃)
λ1(Λ̃)

≤ 2β2k

β1d
.

In other words, for k < β1

2β2
d the lattice Λ̃ does not contain a “free” (d− k)-

dimensional plane. �

3. Some examples

Here we study “free” planes for some classical d-dimensional lattice ball
packings. To this end let qd = (1

2 , . . . , 1
2) ∈ Rd,

Dd = {z ∈ Zd : z1 + · · ·+ zd = 0 mod 2},
Ad = {z ∈ Zd+1 : z1 + · · ·+ zd+1 = 0},
E8 = {x ∈ Z8 ∪ (q8 + Z8) : x1 + · · ·+ x8 = 0 mod 2},
E7 = {x ∈ E8 : x1 + · · ·+ x8 = 0},

and

E6 = {x ∈ E8 : x1 = x2 = x3}.
The lattices A3, D4, D5, E6, E7, and E8 are the unique lattices producing
the densest lattice ball packing in the corresponding dimensions. For the
homogeneous minima we have (cf. [4] by inspection):

λ1(Dd)
2

=
λ1(Ad)

2
=

λ1(E6)
2

=
λ1(E7)

2
=

λ1(E8)
2

=
1√
2
. (3.1)

Let H i,d be the i-dimensional plane in Rd given by

H i,d =
{(

1
2 , . . . , 1

2 , xd−i+1, . . . , xd

)
: xj ∈ R

}
.

Then we have

dist(H i,d, Zd) =
√

d− i

2
and therefore, for k ≥ 2,

µk(Dd) ≥ dist(Hd−k,d, Dd) ≥ dist(Hd−k,d, Zd)

=

√
k

2
≥ λ1(Dd)

2
.

This means that we can always find a (d−2)-dimensional plane intersecting
none of the balls in the interior of the lattice ball packing associated to Dd.

Next, with H = {x ∈ Rd+1 : x1 + · · · + xd+1 = 0} we find analogously
for the lattice Ad and k ≥ 2

µk(Ad) ≥ dist(Hd+1−k,d+1 ∩H,Ad)

≥ dist(Hd+1−k,d+1, Zd+1) ≥ λ1(Ad)
2

.
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For the lattice E8 we set

H4 =
{(

1
2 , 1

2 , 0, 0, x5, . . . , x8

)
: xj ∈ R

}
and get

µ4(E8) ≥ dist(H4, E8) =
1√
2

=
λ1(E8)

2
.

By intersecting H4 with the hyperplane {x ∈ R8 : x1 + · · · + x8 = 0} we
also get

µ3(E7) ≥ λ1(E7)
2

.

Finally, for the lattice E6 let

H3 =
{(

1
2 , 1

2 , 1
2 , 0, 0, x6, x7, x8

)
: xj ∈ R

}
.

Then H3 ⊂ lin(E6) and it is easy to see that

µ3(E6) ≥ dist(H3, E6) =
1√
2

=
λ1(E6)

2
.

In particular these calculations imply

Remark 3.1. The densest lattice packings of Bd, d = 3, . . . , 8, contain a
bd

2c-dimensional lattice plane L such that for a suitable vector t the affine
plane t + L does not meet any of the balls of the packing in their interior.
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